Package: node2vec 0.1.0
node2vec: Algorithmic Framework for Representational Learning on Graphs
Given any graph, the 'node2vec' algorithm can learn continuous feature representations for the nodes, which can then be used for various downstream machine learning tasks.The techniques are detailed in the paper "node2vec: Scalable Feature Learning for Networks" by Aditya Grover, Jure Leskovec(2016),available at <arxiv:1607.00653>.
Authors:
node2vec_0.1.0.tar.gz
node2vec_0.1.0.zip(r-4.5)node2vec_0.1.0.zip(r-4.4)node2vec_0.1.0.zip(r-4.3)
node2vec_0.1.0.tgz(r-4.4-any)node2vec_0.1.0.tgz(r-4.3-any)
node2vec_0.1.0.tar.gz(r-4.5-noble)node2vec_0.1.0.tar.gz(r-4.4-noble)
node2vec_0.1.0.tgz(r-4.4-emscripten)node2vec_0.1.0.tgz(r-4.3-emscripten)
node2vec.pdf |node2vec.html✨
node2vec/json (API)
# Install 'node2vec' in R: |
install.packages('node2vec', repos = c('https://tianyang-0523.r-universe.dev', 'https://cloud.r-project.org')) |
- gene_edges - 6 edges information between two genes of human
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 4 years agofrom:a3586cb1fd. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 20 2024 |
R-4.5-win | OK | Nov 20 2024 |
R-4.5-linux | OK | Nov 20 2024 |
R-4.4-win | OK | Nov 20 2024 |
R-4.4-mac | OK | Nov 20 2024 |
R-4.3-win | OK | Nov 20 2024 |
R-4.3-mac | OK | Nov 20 2024 |
Exports:node2vecR
Dependencies:cliclustercpp11data.tabledplyrfansigenericsglueigraphjsonlitelatticelifecyclemagrittrMASSMatrixmgcvnlmepermutepillarpkgconfigR6RcppRcppProgressrlangrlisttibbletidyselectutf8vctrsveganwithrword2vecXMLyaml
Readme and manuals
Help Manual
Help page | Topics |
---|---|
6 edges information between two genes of human | gene_edges |
Algorithmic Framework for Representational Learning on Graphs | node2vecR |